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Secondary (i.e., heterotrophic or animal) production is a main
pathway of energy flow through an ecosystem as it makes energy
available to consumers, including humans. Its estimation can play
a valuable role in the examination of linkages between ecosystem
functions and services. We found that oil and gas platforms off the
coast of California have the highest secondary fish production per
unit area of seafloor of any marine habitat that has been studied,
about an order of magnitude higher than fish communities from
other marine ecosystems. Most previous estimates have come from
estuarine environments, generally regarded as one of the most
productive ecosystems globally. High rates of fish production on
theseplatformsultimately result fromhigh levels of recruitment and
the subsequent growth of primarily rockfish (genus Sebastes) larvae
and pelagic juveniles to the substantial amount of complex hard-
scape habitat created by the platform structure distributed through-
out the water column. The platforms have a high ratio of structural
surface area to seafloor surface area, resulting in large amounts of
habitat for juvenile and adult demersal fishes over a relatively small
footprint of seafloor. Understanding the biological implications of
these structures will inform policy related to the decommissioning
of existing (e.g., oil and gas platforms) and implementation of
emerging (e.g., wind, marine hydrokinetic) energy technologies.
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Secondary production is the sum of new biomass from growth
for all individuals in a given area during a unit of time. Some

of the original motivations for understanding biological pro-
ductivity stem from the need to estimate the annual production
of fishes that can be taken from a body of water (1, 2). By in-
tegrating multiple metrics that can individually reflect aspects of
fitness (e.g., density, biomass, growth, fecundity, survivorship,
body size, life span), secondary production can be thought of as
a general criterion of success for a population (3, 4). Recent
studies have extended this idea, using secondary fish production
to provide a measure of the productive capacity and economic
value of specific habitats within an ecosystem (5, 6) and, in a few
instances, to evaluate the efficacy of creating artificial reefs and
other forms of habitat restoration (7–9). In ecological studies,
static properties such as density or biomass are typical structural
response variables, whereas the use of secondary production, a
functional measure, has been mostly limited to freshwater and
marine benthic invertebrate studies (4). Meanwhile, marine ecol-
ogists and fisheries scientists continue to advocate for incorpo-
rating more ecosystem-based approaches to managing marine
resources (10–12). This includes calls to add more elements of
community and trophic ecology to the concept of essential fish
habitat (12) and will likely involve the development of functional
measures or indicators that incorporate several processes from
within an ecosystem (13, 14).
The decommissioning of the >7,500 oil and gas platforms

around the world (15, 16) is an unavoidable issue. Understanding
the potential effects of the different decommissioning options on
the biology of fishes living in such habitats will be important

information to consider in the process. These options include
“rigs-to-reefs” approaches where some portion of the platform is
left in the water to continue functioning as an artificial reef. A
main unresolved issue is the degree to which these types of struc-
tures enhance ecosystem function, and in particular secondary fish
production, compared with nearby natural reefs (16–20). Addi-
tionally, with the current global emphasis on developing sources of
renewable energy, deployment of new structures in the marine
environment associated with offshore wind and wave energy ex-
traction is increasing (21–23). These deployments may create op-
portunities to incorporate design elements that may enhance the
conservation value and fisheries production associated with
these structures.
Here, we compare the annual secondary production of fish

communities on oil and gas platforms to those on natural reefs off
the coast of southern California (Fig. 1) and to secondary pro-
duction estimates of fish communities from other marine eco-
systems. To calculate the annual secondary production for a fish
community, referred to here as “Total Production,” we develop
a model based on fisheries-independent density and size structure
data of fishes from visual surveys performed from a manned
submersible once per year for between 5 and 15 y at each site. We
define Total Production of the fish community as the sum of two
components: “Somatic Production,” which is the difference be-
tween the observed biomass during surveys and the biomass
predicted 1 y later using species-specific morphometric, growth,
and mortality functions, and “Recruitment Production,” which
estimates production from the growth of postlarval and pelagic
juvenile fishes that settled or immigrated and survived during
a 1-y time interval. Metrics for a “complete platform” were
scaled to per square meter of seafloor, i.e., overall values were
calculated for an entire platform, and then divided by the surface
area of seafloor beneath the footprint of the platform. This
permits a more direct comparison among platforms and natural
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reefs in the present study, and among estimates of secondary
production of fishes in other ecosystems from the literature,
which are also typically scaled to per square meter of seafloor
(Table 1).

Results and Discussion
Oil and gas platforms off the coast of California have the highest
secondary fish production per unit area of seafloor of any marine
habitat that has been studied (Table 1). The mean annual Total
Production per square meter of seafloor for complete platforms
was significantly greater than, and 27.4 times as much as is pro-
duced per square meter on natural rocky reefs located at similar
depths in the study region (Fig. 2B and Table S1). When plat-
forms are evaluated individually, their average annual Total
Production (range, 104.7–886.8 g·m−2·y−1; Fig. 3) tended to be an
order of magnitude higher than that of fish communities in other
marine ecosystems where similar types of measurements have
been made (range, 0.9–74.2 g·m−2·y−1; Table 1). High rates of fish
production per unit area of seafloor for the complete platforms
are achieved because the platform jacket (horizontal crossbeams
and vertical pilings) and oil and gas conductors create a complex
structure that provides a large surface area of hard substrate
throughout the water column (16, 19) (Fig. 1 and Table S2). This
results in a high ratio of platform structural surface area to sea-
floor surface area (range, 5.4–20.2; Table S2), making large
amounts of habitat available to juvenile and adult demersal fishes
over a relatively small footprint of seafloor (range, 0.2–0.6 ha;
Table S2). High structural complexity of hard substrate is often
associated with marine habitats that have high abundance and
diversity of fishes (24–26). The platform structure supports a di-
verse community of sessile and motile invertebrates that, along
with planktonic food resources, provide the base of the food web
for platform fishes (27).
Previous estimates of secondary production for marine fishes

have come from more shallow habitats (Table 1). Most are from
estuarine environments, generally regarded as one of the most
productive ecosystems globally (28). Some estimates also come

Fig. 1. Platform diagram and map of the study area. The platform mid-
water habitat encompasses the hard substrate of the platform structure
from the water surface to 2 m above the seafloor, whereas the platform
base habitat is the bottom 2 m of the platform structure. The platform
structure consists of outer vertical pilings and horizontal crossbeams (i.e., the
platform jacket) and the vertical oil and gas conductors in the center. Note
this is a general display diagram and the designs of these structures vary
from platform to platform. The 16 platforms (filled circles; names in all
capital letters) and seven natural reefs (open circles) used in the study were
surveyed for at least 5 (up to 15) y between 1995 and 2011.

Table 1. Estimates of secondary production of fishes from various marine ecosystems

Ecosystem Fish production, g·m−2·y−1 Reference

Oil platforms, California, United States 104.7–886.8* Present study
Coral reef, Moorea 74.2* Ref. 59
Estuary, Louisiana, United States 35.0–72.8* Ref. 60 as cited in ref. 61
Coastal lagoon, (Pacific) Mexico 24.6–66.7* Ref. 62 as cited in ref. 61
Artificial rocky reef, California, United States 66.5*,†,‡ Ref. 8
Coastal lagoon, Texas, United States 12.1–57.6* Ref. 63 as cited in ref. 61
Estuary, South Africa 55.9* Ref. 61
Estuary, California, United States 37.6*,§ Ref. 64
Coastal lagoon, Mexico 34.5* Ref. 65
Salt marsh, New Jersey, United States 33.5§,{ Ref. 66
Salt marsh, Delaware, United States 32.4§,{ Ref. 67 recalculated in ref. 66
Coastal lagoon, Cuba 22.0–27.6* Ref. 68 as cited in ref. 61
Deep rocky reef, California, United States 4.4–22.4* Present study
Coastal lagoon, Mexico 20* Ref. 69 as cited in ref. 61
Eelgrass bed, North Carolina, United States 18.4*,§ Ref. 42
Estuary, Italy 9.0–17.0* Ref. 70 as cited in ref. 61
Chesapeake Bay, United States 11.2–16.4*,† Ref. 71
Seagrass bed, southern Australia 2.7–15.8*,§ Ref. 72
Coastal lagoon, Texas, United States 15.4* Ref. 73
Mangrove habitat, Florida, United States 6.1–12.1{ Ref. 74
Salt marsh, Massachusetts, United States 6.4§,{ Ref. 75 recalculated in ref. 66
Soft bottom, California, United States 5.9*,† Ref. 8
Estuary, Scotland 4.3* Ref. 76 as cited in ref. 61
Coastal lagoon, Portugal 0.9–2.5* Ref. 77

After refs. 61 and 78. Also note that, although fish production of 29–901* g·m−2·y−1 was reported for Bahamian tidal creeks, surveys
were performed at low tide when fishes were aggregated into a fraction of the total available habitat. Therefore, the authors of that
study caution against comparing these values with those from other studies (79).
*Based on summation of production estimates from multiple species in an assemblage.
†Original estimate for partial-year time interval was standardized to a 1-y interval.
‡Original estimate contained gonadal production component; only somatic production component is reported here.
§Original estimate was in grams dry weight and converted to grams wet weight by multiplying by 4 (64).
{Production estimate for a single species.
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from nearshore coral and rocky reefs, studies that typically ac-
count only for production of demersal fishes living near the
surface of the habitat structure (see references in Table 1); thus,
these studies do not account for production throughout the water
column and may underestimate total production. These latter
estimates may be more comparable to our estimates of production
per square meter of transect along the two specific types of plat-
form habitat: the “platform midwater habitat,” which is the plat-
form structure from the water surface to 2 m above the seafloor,
and the “platform base habitat,” which is the bottom 2 m of the
platform structure (Fig. 1). When these estimates are compared,
we still find some annual platform-specific estimates are well
above the annual estimates from other ecosystems (see individual
points >75 g·m−2·y−1 for base and midwater habitat in Fig. 2A;
Table 1). Furthermore, the average annual amounts of production
in those habitats for multiple different platforms (i.e., the sum
of the two production components for individual platforms pre-
sented in Fig. S1) are also similar to or above secondary fish
production estimates from the other ecosystems.
The high vertical relief platform midwater habitats of these

structures are important nursery grounds for young rockfishes
that settle to the platforms as larvae or pelagic juveniles (19, 29).
Recruitment Production per square meter of midwater platform
habitat (i.e., not scaled to per square meter of seafloor) was 3.7
times as much as that on natural reefs (Table S1). With hard
substrate located throughout the water column, platform mid-
water habitat is likely more readily accessible than natural reefs
to the settling fishes that tend to be found in the upper 100 m of
the water column during their pelagic stage (30). Recruitment
Production and Somatic Production of smaller fishes on platforms
is likely further enhanced over natural reefs because predation
rates on small fishes may be lower in platform midwater habitats
(31), likely due to the relative scarcity of predators compared with
natural rocky reefs in the region (19, 29). Increased habitat struc-
ture from artificial reefs in Florida has also been shown to reduce
predation and increase production of demersal fishes (26). Ulti-
mately, because the surface area of the structure on these
California platforms is mostly midwater habitat (average, 96.8%;
SE, 0.4%; range, 95.1–98.5%), platform midwater habitat tended
to contribute much more than platform base habitat to the com-
plete platform production metrics scaled to per square meter of
seafloor (average contribution of platform midwater habitat:
Somatic Production: 88.6%; SE, 3.7%; range, 57.7–99.0%; Re-
cruitment Production: 94.9%; SE, 2.8%; range, 67.8–100.0%; Total
Production contribution: 91.7%; SE, 2.8%; range, 69.0–99.5%).

As they grow older, rockfishes of many species tend to move
into deeper waters (32), and this was evident in the patterns of
fish production on the platforms. This ontogenetic habitat use
pattern is also likely an important factor that may lead to the
previously mentioned reduced predation on platforms, further
separating juveniles and smaller adult fishes from the larger pi-
scivorous fishes that may prey upon them. Significantly greater
Total Production and Somatic Production values were observed
per square meter of platform base habitat than in either natural
reef or platform midwater habitat (Fig. 2A and Table S1). The
Total Production and Somatic Production values of platform base
habitat were 4.8 and 5.2 times as much as that on natural reefs,
respectively. The structure at the bases of these platforms form
complex “sheltering habitats” created by the large horizontal
beams typically at or near the seafloor. They are often partially
buried with fallen mussel shells and sediments further increasing
the habitat complexity and creating preferred microhabitats for
many species of adult rockfishes (33).
The classic “attraction–production debate,” relating to con-

structing artificial reefs as a fisheries management tool to increase
production of exploited fishes, centers primarily around whether
hard-bottom habitat is a limiting factor. If so, additional habitat
that produces fishes at an equivalent or better rate than natural
habitats should result in increased production. However, if it is
not limiting, then artificial habitat may only serve to attract and
aggregate fishes, making them more easily caught, potentially
resulting in further declines in overexploited fisheries (34, 35).
Although platforms represent a small contribution to the overall
hard substratum in California (18), these structures may be pro-
viding a large amount of the hard substrate below a depth of 50 m
(17). Therefore, deeper-water platforms may provide consider-
able hard substrate in soft-bottom outer shelf regions (36). Fur-
thermore, it is clear that juvenile rockfishes are recruiting to and
being produced on platforms over multiple years, and these
habitats may be valuable in rebuilding populations of bocaccio
(Sebastes paucispinis), an overfished species in the region (29). A
study modeling larval transport dynamics around one platform in
this region also found that most juvenile bocaccio that did not
recruit to the platform would otherwise have perished (37).
Therefore, the platform was not drawing fish away from recruit-
ing to other natural habitats, but providing a net increase in re-
cruitment. This is likely not the case for all species and all platforms,
and the isolation of platforms from extensive swaths of natural
hard-bottom habitat possibly further contributes to their high rates

Fig. 2. Annual Total Production. (A) Annual production values scaled to per
square meter of habitat for natural reefs (n = 56) and platform habitat
subtypes [base (n = 111), midwater (n = 132)]. (B) Annual production values
scaled to per square meter of seafloor for natural reefs (n = 56) and com-
plete platforms (n = 111). Circles indicate individual data points and are
jittered for visibility. Horizontal lines show the backtransformed estimated
marginal means. The shaded box represents the 95% confidence intervals
(CIs) of the mean. Differences were considered significant if the 95% CIs of
their marginal means did not overlap.

Fig. 3. Annual Total Production by site. Average of annual values scaled to
per square meter of seafloor with SE error bars are divided into Somatic
Production (purple) and Recruitment Production (yellow). Sites of each type
are ordered from south to north, and platform site names are in capital
letters. Note that the base habitat of platforms Habitat, Hillhouse, A, and B
were never surveyed and therefore not included in these calculations, so
their values will be underestimated.
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of production. Production per square meter would likely be reduced
if a platform was located adjacent to extensive areas of natural
habitat. However, if survival rates of recruiting juveniles to plat-
form midwater habitats were still enhanced over natural habitats,
the platform would still act to increase the net production and
possibly export adult fishes to surrounding habitats. Additionally,
other authors suggest that if artificial structures are designated as
no-take areas, then the attraction–production issue may cease to
be relevant. This is because the main negative of attraction is that
it may make it easier to exploit fishes, and thus protected reefs
would only serve to export biomass through spillover and larval
export (38). Many operational offshore structures associated with
energy production, including some of the platforms in California,
currently function as “de facto marine reserves” due to the dif-
ficulties of fishing them or safety regulations that limit fishing
vessel access all together (22, 23, 39).
Relatively few taxa contributed more than 5% of the Total

Production across all habitats (Table S3). This is a common
pattern in other ecosystems, where the production of a fish assem-
blage is typically dominated by a few of the species (see refer-
ences in Table 1). In all habitats studied here, the biggest
contributors were various rockfish species (genus Sebastes) and
lingcod (Ophiodon elongatus). Larger-bodied species such as
lingcod and bocaccio, contributed more to production because
they have relatively high growth and survival rates (Fig. S2)
even though they were not the most abundant species. How-
ever, some smaller-bodied species, such as halfbanded rockfish
(S. semicinctus) and squarespot rockfish (S. hopkinsi), also
contributed substantial amounts of secondary production be-
cause they were very abundant. We should also note that the
contributions of species that tend to be more prevalent in shallow
water (19, 40) are likely underestimated in our platform estimates
because these shallower depths were not well sampled on some
platforms (Table S2). However, this effect will be minimized for
deeper platforms because shallow depths make up a relatively
small proportion of their submerged surface area.
In developing our production model, we made deliberate

choices in terms of how we account for changes in the abundance,
or turnover, of observed fishes over the 1-y time interval so that
our production estimates would tend to be conservative. Studies
of secondary fish production commonly estimate fish production
as the product of average biomass and specific growth rate over
a time interval, typically 1 y (2, 41; see references in Table 1). A
key feature of this method is that average biomass over the in-
terval is used. Assuming that samples are taken frequently
enough to accurately quantify fish throughout the time interval,
this method attempts to directly account for turnover of indi-
viduals, or changes due to predation, immigration, and emigra-
tion (2, 42). Because the data we used to estimate fish production
were only from one sampling event per year, we needed to ac-
count for (i) losses due to mortality, (ii) changes due to adult
immigration and emigration, and (iii) production from fishes
that recruited (i.e., immigration of larval and pelagic juveniles)
to the habitat during the time interval. To account for mortality
of observed fishes we apply a length- and species-specific annual
mortality function (43). This results in very low annual rates of
survival for the relatively small size classes for a given species (the
effect of this can be seen in Fig. S2), and thus reduces the con-
tribution that the smaller individuals of a given species make to
the Somatic Production component of the model. Another par-
ticularly conservative feature of our model is that we apply the
mortality at the start of the time interval. Therefore, the pro-
duction from fishes that do not survive the entire interval, but
would typically be accounted for in methods where fishes can be
sampled on multiple occasions during the time interval (see
references in Table 1), is excluded from our estimates. Because
rockfishes tend to have high site fidelity (44–46), the calculations
of the Somatic Production component also assume immigration
and emigration rates are equal. Furthermore, previously ob-
served seasonal changes of the fish communities on platforms, at
least for more shallow depths, consisted primarily of the presence

or absence of pelagic species (40) and these types of transient,
highly mobile species (e.g., jack mackerel, Trachurus symmetricus,
Pacific sardine, Sardinops sagax) were excluded from the data used
for our production estimates. Finally, our Recruitment Produc-
tion component is also conservative in a similar manner as the
mortality function, as it does not include the production of fishes
that recruited to the habitat and grew for some period, but died
before being observed during the annual survey (6).
Additional aspects of both the survey methodology used to

collect the empirical data used in our model and previous studies
of organisms on offshore platforms, would further suggest that
our complete platform production estimates are likely conser-
vative relative to estimates of fish production from other hab-
itats. First, only fishes within 2 m of the platform exterior were
counted during surveys, and fishes in the substantial water volume
within the platform structure were not counted. Large numbers of
rockfishes were often observed in the water column within the
internal structure, particularly during years when fish densities are
highest (29). Second, our model uses the same species-specific
growth parameters from the literature to estimate fish growth and
mortality for all habitats and therefore does not account for var-
iability in growth or mortality across sites or habitat types. How-
ever, it has been demonstrated that rockfish and mussels (Mytilus
spp.), one of the dominant filter-feeding invertebrates on plat-
forms, can grow faster in these offshore artificial environments
than in their corresponding natural habitats (47–49). Addition-
ally, as we previously described, predation rates on small fishes
may be lower in platform midwater habitats than at natural reefs
(31). Therefore, although our model likely underestimates vari-
ability among years and sites because it does not account for
these potential differences, these factors would again suggest
that we are not overestimating the differences between fish
production on platforms and fish production from other marine
ecosystems in the literature (Table 1).
High interannual variability in rockfish recruitment is well

documented (20, 50), and this was evident in the positive skew in
the distributions of annual values for all metrics (see ranges in
Table S1). As a result, Somatic and Recruitment Production varied
highly across space (Fig. S1, see site means) and over time (Fig. S1,
see site SEs, which reflect year-to-year variability). A large re-
cruitment event will increase the Recruitment Production com-
ponent that year. If the strong year class persists (e.g., 29), it will
also make a substantial contribution to the Somatic Production
component over the subsequent years, with the highest levels of
production occurring when a given species reaches intermediate
lengths (Fig. S2). Given the high temporal and spatial recruitment
variability in fishes across ecosystems (51), and the prevalence of
relatively few species contributing the majority of annual sec-
ondary production (this study; see references in Table 1), caution
should be taken when generalizing secondary production values
to an ecosystem or habitat type from a single year of data. Long-
term datasets are extremely important to estimate production, an
idea that has often been mentioned in the context of estimating
the productive potential of artificial habitats (22, 23, 35, 38). This
should be considered when designing protocols for making oil
and gas platform decommission decisions and monitoring new
offshore structures associated with renewable energy production.
Even though oil platforms off the coast of California were not

designed to be high production artificial reefs, being among the
most productive marine fish habitats that have been studied, they
can provide insight into what drives high rates of fish production
for both natural and artificial habitats. Management decisions will
need to be made regarding (i) the fate of the thousands of plat-
forms that will become economically obsolete over the coming
decades (15, 16), and (ii) both the design and policy related to
the construction and deployment of offshore renewable energy
structures in the marine environment (21–23). Because human
activities are threatening fish populations on natural reefs globally
(52, 53), understanding the biological productivity of artificial
structures is even more critical in terms of conservation of ma-
rine resources. Engineering modifications that may increase fish
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production could be a consideration during the design process of
offshore renewable energy structures to maximize the potential
conservation and fishery benefit from their deployment. These
could include increasing midwater habitat surface area and com-
plexity for recruiting fishes. If species of interest have a similar
ontogenetic habitat pattern as many rockfishes, moving deeper as
they grow, then local production may be further increased by
providing substantial amounts of complex hard substrate habitat
on the seafloor at the base of a structure (16, 19, 22, 39). Re-
cruitment variability will also play a large role in determining the
production over time at a given site. Understanding the local and
regional oceanography related to larval fish delivery will be an
important consideration in terms of how structure location influ-
ences fish production (37, 54). In contrast to the limited life spans
of structures associated with fossil fuel extraction, estimates for
decommissioning renewable energy instillations are more flexible
and devices have the potential to be maintained in the marine
environment for a much longer period (22). This creates the op-
portunity for adaptive management strategies. Combined with
long-term biological monitoring, the designs of these structures
can be tested in terms of fish production capabilities. Structures
could then be modified as equipment has to be maintained and
replaced over the longer term to increase conservation and
fishery benefits.

Methods
Dataset. Data for this study were obtained from annual visual surveys con-
ducted during daylight hours in the fall using the manned Delta research
submersible from 1995 through 2009 and the Dual Deepworker in 2010–
2011. A researcher aboard the submersibles identified, counted, and esti-
mated the total lengths (to the nearest 5 cm) of all fishes along 2-m–wide
belt transects. Because different subsets of sites were surveyed each fall, we
used data from the 16 platforms (in bottom depths of 47–224 m) and seven
natural reefs (in bottom depths of 44–311 m) (Fig. 1) that had been surveyed
for at least 5 y, some of which had been surveyed up to 15 y (Table S2). At
platforms, transects ran along the outside of each horizontal beam from
near-surface waters to, in most instances, the bottom (Table S2). Because
horizontal beam length increases with depth, survey effort is roughly pro-
portional to the surface area of structure at each depth. Platform transects
were classified into two habitat subtypes: platform midwater habitat, from
water surface to 2 m above the seafloor; and platform base habitat, encom-
passing the bottom 2 m of the platform (Fig. 1) (19). All of the “natural reef”
sites used in the analyses were primarily deep rocky outcrops and banks of
high-relief bedrock and boulders of various sizes. At natural reef sites, trans-
ects typically ran parallel to rocky ridges chosen at the time of survey from
previously acquired seafloor data. Further details on the survey methodology
and site descriptions are available elsewhere (19, 29, 32). Annual densities (fish
per square meter) at each site for each 5-cm size class in each taxon were
calculated for each habitat category (i.e., natural reef, platform base,
platform midwater).

Biological Metrics. In addition to calculating secondary fish production, we also
calculated the total fish density and total fish biomass for each habitat type,
site, and year. Observed fish lengths were converted to biomass using species-
specific morphometric relationships from the literature (Table S3). To calculate
the annual secondary production for a fish community, referred to here as
Total Production, we developed a model based on fisheries-independent
density and size structure data of fishes from visual surveys performed from
a manned submersible once per year. Details of the production model are
provided in SI Methods.

Statistical Analyses. The effect of habitat type on each metric calculated [i.e.,
density (fish per square meter), biomass (grams per square meter), Somatic
Production (grams per square meter per year), Recruit Production (grams per
square meter per year), and Total Production (grams per square meter per
year)] was evaluated using linear mixed models (LMM). The first set of LMM
analyses compared metrics between natural reefs and the complete platform
metric. Data from platforms that never had their bases surveyed (i.e., Plat-
form A, B, Habitat, and Hillhouse) were excluded from analyses involving
complete platform scaled metrics. A second set of LMM analyses compared
metrics among natural reef, platform base, and platform midwater habitat
subtypes. Model formulations and the analysis procedure followed Bolker
et al. (55) for an unbalanced sampling design with crossed random effects.
Models were fitted with the “lmer” function in the “lme4” package (56) in R
(57) using restricted maximum likelihood. In each model, habitat type was the
fixed factor, combined with a random intercept term for Year and separate
random intercept terms for Site within each habitat type. Considering Year
as a random factor appears most appropriate due to minimal evidence of
temporal autocorrelation in the autocorrelation functions for each site. Ad-
ditionally, there was limited data from successive years for many sites. To
meet normality assumptions, response variables were Log10(x) transformed,
or log10(x + 1) transformed in the case of Recruitment Production due to the
presence of zeros. For each habitat type in each model, we calculated esti-
mated marginal means and 95% confidence intervals (CIs) for the means
based on 5,000 simulations using the package “arm” (58) in R. Estimated
marginal means are predicted means that are calculated from the fitted
model and are adjusted appropriately for any other variable in the model. In
this case, those are the random factors Site and Year. These values were
transformed back to their original scales for reporting. Note that these
antilogs of the mean of logged data are estimates of the geometric mean,
which also approximates the median on the original scale. Differences
were considered significant if the 95% CIs of their marginal means did
not overlap.
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SI Methods
Biological Metrics. All metrics were calculated annually for natural
reefs and for each platform habitat subtype (midwater, base).
Plus, they were also calculated for the “complete platform” scaled
to per square meter of seafloor beneath the footprint of the
platform. This was done by multiplying the platform midwater
and platform base metrics by the submerged surface area of plat-
form structure for each habitat type, and then dividing by the sur-
face area of seafloor beneath the footprint of the platform (Table
S2). The amount of surface area in each habitat subtype was allo-
cated in proportion to the volume in each habitat type, calculated
from platform dimensions using the formula for a truncated pyra-
mid (1). When only one of the two platform habitat subtypes was
sampled in a given year, typically due to limited visibility around
the platform base (Table S2), its mean value was used for that
year to calculate the annual complete platform metric.
In addition to calculating secondary fish production, we also

calculated the total fish density and total fish biomass for each
habitat type, site, and year. Total fish density (fish per square
meter) of the observed fish assemblage is as follows:

Df ; y =
Xn
j=1

Xm
i=1

Ni; j; f ; y; [S1]

where Ni;j;f ;y, the density of size class i of species j at each habitat
type and site f in each year y surveyed, is summed across all size
classes m and species n observed. The standing stock biomass
density (grams per square meter) of the assemblage is as follows:

Bf ; y =
Xn
j=1

Xm
i=1

Ni; j; f ; ywi; j; [S2]

where wi;j (in grams) is the average weight at length. Average
weight at length is obtained from the standard equation:

wi; j = ajL
bj
i; j; [S3]

where Li;j is length (in centimeters), and a and b are species-
specific curve parameters (Table S3). When a length–weight equa-
tion was based on standard length (SL) or fork length (FL), the
observed total length (TL) was converted using standard species-
specific length–length conversion equations. In some cases fishes
could only be identified to genus or species group (Table S3). For
fishes or larger taxonomic groups without known conversion pa-
rameters, best professional judgment was used to assign a proxy
species considering taxonomy, morphology, and relative abun-
dance (Table S3). Transient, highly mobile species (e.g., jack
mackerel, Trachurus symmetricus, Pacific sardine, Sardinops sagax)
were excluded from the dataset.

Production Model.To calculate the annual secondary production for
a fish community, referred to here as “Total Production,” we de-
veloped a model based on fisheries-independent density and size
structure data of fishes from visual surveys performed from a
manned submersible once per year. Ourmodel expands on previous
versions of an approach (2), which calculated annual secondary
production for all fish species in a community by subtracting current
total biomass estimates from total biomass estimates predicted 1 y
later using species-specific weight–length relationships and von
Bertalanffy growth functions, but did not account for changes due

to immigration, emigration, or mortality over the time interval. In
our model, the “Somatic Production” component, which is the dif-
ference between the biomass of fishes observed during the surveys
and their biomass predicted 1 y later, also accounts for losses due to
mortality by including a species- and size-specific natural survivor-
ship function (3). Because rockfishes tend to have high site fidelity
(4–6), the calculations of the Somatic Production component also
assume immigration and emigration of adults and postsettlement
juveniles are equal. However, over the course of the 1-y time in-
terval, additional larval and pelagic juvenile fishes will also recruit to
the habitat. Therefore, we account for the production from their
subsequent growth of surviving individuals in the “Recruitment
Production” component of Total Production (following ref. 7).
Total Production (in grams per square meter per year),

PT
f ; y = PS

f ; y +PR
f ; y; [S4]

is the sum of Somatic Production PS
f ; y and Recruitment Produc-

tion PR
f ; y. Somatic Production (in grams per square meter per

year) is as follows:

PS
f ; y =

Xn
j=1

Xm
i=1

Ni; j; f ; yGW
i; jSi; j; [S5]

where GW
i;j is the annual growth in weight and Si; j is the annual

survivorship. Annual growth is based on the expected increase in
length over the 1-y time interval ΔL̂i; j. This is estimated according
to the Fabens version of the von Bertalanffy growth function (8):

ΔL̂i; j =
�
L∞; j −Li; j

��
1− e−Kj

�
; [S6]

where Li; j is the observed fish size class (TL; in centimeters), and
L∞; j and Kj are the species-specific von Bertalanffy parameters.
L∞; j is the mean asymptotic length and Kj is the rate at which L∞; j
is approached (Table S3).GW

i; j is the difference between the weight
after 1 y of growth in length and its initial estimated weight at the
observed length:

GW
i; j = aj

�
Li; j +ΔL̂i; j

�bj

−wi; j: [S7]

Annual survivorship is calculated according to ref. 8:

Si; j = e−Mi; j ; [S8]

where Mi; j (1/year) is a length- and species-specific annual in-
stantaneous natural mortality rate. To estimate Mi;j, we used the
empirical formula described in ref. 3:

ln
�
Mi; j

�
= 0:55− 1:61 ln

�
Li; j

�
+ 1:44 ln

�
L∞; j

�
+ ln

�
Kj
�
; [S9]

which estimates natural mortality as a function of the observed
fish size class and its von Bertalanffy parameters (Table S3). A
recent review suggests this may be the best-supported estimator
that is currently available (9). Mortality is applied here at the
start of the production interval (i.e., fish die, then grow).
Annual Recruitment Production is defined here as the amount

of new biomass produced due to the settlement, growth, and
survival of larval fishes during the time interval. We estimate PR

f ; y
using the biomass of all fishes less than L1

j , the average length at
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1 y post settlement (similar to 7) as predicted by the von
Bertalanffy growth function:

L1
j = L∞;j

�
1− e−Kjðt−t0;jÞ�; [S10]

where t0;j is the von Bertalanffy parameter for the theoretical age
when length is 0 (Table S3). This thus incorporates variability in
annual recruitment patterns over the previous year, and the cu-

mulative effect of species-specific survival and growth up to the
point these fishes were observed on surveys. In most cases, we
solved for L1

i;j by setting t to 0.5 y. However, for species where t0
was 0.0, typically resulting from the parameter being fixed there
during model fitting due to a lack of young individuals in the
sample, we then set t to 1.0 y to estimate L1

i;j. P
R
f ;y is then calcu-

lated according to Eq. S1, setting the density (Ni;j;f ;y) to 0 for all
size classes greater than size at 1 y postsettlement.
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Fig. S1. Annual Production by site and habitat type. Average annual (A) Somatic Production and (B) Recruitment Production scaled to per square meter of
habitat with SE error bars by habitat type (natural reefs: black bars; platform base: white bars; platform midwater: gray bars). Sites of each type (natural reefs,
platforms) are ordered from south to north, and platform site names are in capital letters.
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Fig. S2. Annual Somatic Production per individual observed by total length. The values are the product of GW
i,j , the annual growth in weight and Si,j , annual

survivorship (Eq. S5, SI Methods) and plotted for each species that contributed at least 1% of Total Production in any habitat (Table S3). Values are plotted over
the size classes that a species was observed and rockfishes, Sebastes spp. were plotted with dashed lines. Note that, although growth in length according to the
von Bertalanffy growth equation is highest at the smallest size, production here is maximized at intermediate lengths due to the exponential increase with
weight at length and low survival at small sizes. Also, production goes to 0 when fishes grow larger than the mean asymptotic length predicted by the von
Bertalanffy growth function.

Table S1. Estimated marginal means and 95% confidence intervals (CIs) from linear mixed model (LMM) analyses
and the range of annual values

Metric Natural reef Platform base Platform midwater Platform complete

Density, fish/m2 Mean 0.5 1.8 0.9 15
95% CI (0.3–1.1) (0.9–3.5) (0.5–1.5) (8.9–25.3)
Range (0.1, 5.3) (0.2, 38.4) (0.02, 29.0) (0.6, 178.0)

Biomass, g/m2 Mean 42.5 203.0 30.8 514.8
95% CI (27.4–65.8) (131.0–312.5) (17.5–54) (329.9–804.1)
Range (4.7, 327.6) (12.9, 1210) (0.3, 643.5) (48.4, 6577)

Somatic Production, g·m−2·y−1 Mean 5.6 28.9 7.0 110.9
95% CI (3.2–10.0) (18.9–44.5) (4.2–11.5) (74.5–165.6)
Range (0.9, 31.2) (3.0, 164.3) (0.1, 227.6) (11.5, 2299)

Recruit Production, g·m−2·y−1 Mean 1.2 2.5 4.4 55.3
95% CI (0.4–2.6) (0.8–5.8) (2.6–7.2) (34.2–90.3)
Range (0.0, 17.8) (0.0, 253.4) (0.0, 253.9) (0.7, 1363)

Total Production, g·m−2·y−1 Mean 6.9 33.3 11.9 188.9
95% CI (3.6–13.0) (20.5–53.8) (7.2–19.9) (125.1–286.5)
Range (0.9, 46.1) (4.3, 417.6) (0.1, 379.7) (14.8, 2608)

Mean and CI values of logged data were transformed back to their original scales for reporting. Differences were considered
significant if the 95% CIs of their marginal means did not overlap.
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Table S2. Survey statistics and platform structural dimensions

Survey Platform

Site Habitat No. Length, m Minimum depth, m Maximum depth, m Surface area, m2 Seafloor footprint area, m2

IRENE Base 11 207 72 72 621 2,664
Midwater 11 193 28 50 14,243

HIDALGO Base 10 264 129 129 1,662 4,333
Midwater 10 600 32 105 71,629

HARVEST Base 5 316 202 202 1,544 5,890
Midwater 6 994 20 170 77,577

HERMOSA Base 6 262 179 179 1,319 5,203
Midwater 6 896 41 156 83,784

HOLLY Base 11 186 60 60 984* 1,952*
Midwater 13 292 7 35 20,431*

B Midwater 5 500 5 40 20,804 1,979
A Midwater 7 420 5 32 20,996 1,890
HILLHOUSE Midwater 5 375 5 35 21,206* 2,014
HABITAT Midwater 5 527 10 65 25,766 2,242
GILDA Base 5 195 56 62 862 2,081

Midwater 7 247 7 41 18,626
GRACE Base 13 246 92 95 777 3,004

Midwater 14 601 20 80 25,068
GAIL Base 14 300 220 224 1,675 5,390

Midwater 15 1,606 10 168 104,752
EDITH Base 8 212 47 47 846 2,590

Midwater 7 267 10 30 16,360
ELLY Base 7 220 75 75 568* 2,664*

Midwater 7 397 12 55 13,850*
ELLEN Base 7 203 77 77 1,064* 2,664*

Midwater 7 330 12 55 26,779*
EUREKA Base 3 281 210 215 1,809* 5,390*

Midwater 7 1,533 15 190 107,074*
Harvest Reef Natural reef 11 837 98 108
12 Mile Reef Natural reef 5 5,938 105 130
Hueneme Canyon Natural reef 5 1,175 90 95
Anacapa Passage Natural reef 11 1,836 44 47
Footprint Natural reef 14 4,047 92 148
Piggy Bank Natural reef 5 1,501 270 311
Short Banks Natural reef 5 1,365 47 60

No., number of years surveyed. Length, average total length of transects from annual surveys. Platform statistics, estimated surface area of platform
structure in each habitat subtype and the surface area of seafloor beneath the “footprint” of the platform (1).
*When platform dimensions or surface area estimates were unavailable (1), the following proxies were used from platforms with similar structures from similar
water depths: IRENE for ELLEN and ELLY surface and base platform dimensions, GAIL for EUREKA surface and base platform dimensions, C for HOLLY surface
area and surface and base platform dimensions, and A for HILLHOUSE surface area and surface platform dimension.

1. MBC (1987) Ecology of Oil/Gas Platforms Offshore California (US Department of the Interior, Minerals Management Service, Pacific OCS Region, Camariilo, CA), OCS Study MMS
86-0094, pp 1–92.
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Table S3. Observed taxa that contributed to production estimates and life history parameter sources

Taxon
Natural
reef

Platform
base

Platform
midwater

Platform
complete WL VBGF LL

Agonidae <0.1 (84) <0.1 (78) <0.1 (92) Xeneretmus
latifrons

Aspidophoroides
monopterygius (1)

Ref. 1

Alloclinus holderi <0.1 (100) Ref. 2 Heterostichus
rostratus (3)

Anarrhichthys ocellatus <0.1 (60) <0.1 (58) <0.1 (60) <0.1 (69) Ref. 4 Cebidichthys
violaceus (5)

Anoplopoma fimbria <0.1 (79) Ref. 4 Ref. 6 Ref. 7
Argentina sialis <0.1 (52) <0.1 (68) <0.1 (87) Ref. 2 Ref. 8
Brosmophycis marginata <0.1 (85) Ref. 9 Cebidichthys

violaceus (5)
Careproctus melanurus <0.1 (102) Ref. 10 Palmoliparis

beckeri Ref. 11
Ref. 7

Caulolatilus princeps <0.1 (76) Ref. 4 Ref. 12
Cephaloscyllium ventriosum 0.1 (42) Ref. 13 Mustelus

californicus
Chilara taylori <0.1 (108) Ref. 14 Ref. 8 Ref. 7
Chromis punctipinnis 2.1 (11) <0.1 (59) 4.2 (6) 1.9 (10) Ref. 15 Embiotoca

jacksoni
Ref. 7

Citharichthys sordidus <0.1 (88) 0.2 (30) <0.1 (72) 0.1 (37) Ref. 2 Ref. 16
Citharichthys spp. 0.1 (49) 0.2 (29) <0.1 (56) 0.1 (36) Citharichthys

sordidus
Citharichthys

sordidus
Cottidae <0.1 (58) <0.1 (62) <0.1 (36) <0.1 (57) Artedius

corallinus
Scorpaenichthys
marmoratus

Artedius
corallinus

Cryptotrema corallinum 0.1 (50) <0.1 (77) <0.1 (92) Alloclinus
holderi

Heterostichus
rostratus (3)

Cymatogaster aggregata <0.1 (115) <0.1 (55) <0.1 (67) Ref. 13 Ref. 17 Ref. 13
Embiotoca jacksoni <0.1 (96) Ref. 14 Ref. 18 Ref. 4
Embiotocidae 0.1 (43) 0.1 (36) 0.1 (20) 0.1 (34) Embiotoca

jacksoni
Embiotoca
jacksoni

Ref. 4

Enophrys taurina <0.1 (54) <0.1 (64) Ref. 19 Scorpaenichthys
marmoratus

Eopsetta jordani <0.1 (109) Ref. 4 Ref. 20
Eptatretus spp. <0.1 (90) Eptatretus

stoutii
Heterostichus
rostratus (3)

Eptatretus stoutii <0.1 (89) Ref. 21 Heterostichus
rostratus (3)

Girella nigricans 0.1 (23) <0.1 (48) Ref. 4 Ref. 22 Ref. 7
Glyptocephalus zachirus <0.1 (98) Ref. 23 Ref. 24
Halichoeres semicinctus <0.1 (66) <0.1 (86) Ref. 4 Ref. 25 Ref. 7
Hexagrammos decagrammus <0.1 (62) 0.2 (31) <0.1 (31) 0.1 (35) Ref. 26 Ref. 27 Ref. 7
Hexanchus griseus <0.1 (115) Ref. 28 Galeorhinus

galeus
Hydrolagus colliei 1.1 (15) <0.1 (50) <0.1 (59) Ref. 29 Ref. 30 Ref. 29
Hypsurus caryi <0.1 (104) Ref. 14 Embiotoca

jacksoni
Ref. 7

Hypsypops rubicundus 0.1 (19) 0.1 (41) Ref. 13 Embiotoca
jacksoni

Ref. 7

Icelinus filamentosus <0.1 (103) Clinocottus
analis

Scorpaenichthys
marmoratus

Icelinus spp. <0.1 (95) <0.1 (63) <0.1 (83) Clinocottus
analis

Scorpaenichthys
marmoratus

Icelinus tenuis <0.1 (115) Clinocottus
analis

Clinocottus analis

Lepidopsetta bilineata <0.1 (107) Ref. 31 Ref. 32 Ref. 7
Lycodes pacificus <0.1 (97) Ref. 2 Ref. 33
Lyopsetta exilis <0.1 (91) Ref. 2 Ref. 34
Lythrypnus dalli <0.1 (77) <0.1 (93) Ref. 19 Heterostichus

rostratus (3)
Medialuna californiensis 0.3 (16) 0.1 (31) Ref. 2 Ref. 22 Ref. 7
Merluccius productus <0.1 (70) <0.1 (74) <0.1 (51) <0.1 (77) Ref. 4 Ref. 35 Ref. 7
Microstomus pacificus <0.1 (61) <0.1 (67) <0.1 (78) Ref. 36 Ref. 36
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Table S3. Cont.

Taxon
Natural
reef

Platform
base

Platform
midwater

Platform
complete WL VBGF LL

Odontopyxis trispinosa <0.1 (76) <0.1 (93) Ref. 37 Xeneretmus
latifrons

Ophidiidae <0.1 (86) Ophidion
scrippsae

Heterostichus
rostratus (3)

Ref. 7

Ophiodon elongatus 13.9 (2) 16 (2) 0.3 (15) 9 (4) Ref. 4 Ref. 38 Ref. 7
Oxyjulis californica 0.6 (21) <0.1 (38) <0.1 (62) Ref. 4 Halichoeres

semicinctus
Ref. 7

Oxylebius pictus <0.1 (51) 0.2 (26) 0.3 (14) 0.3 (25) Ref. 13 Ref. 39 Ref. 7
Paralabrax clathratus 0.1 (24) <0.1 (49) Ref. 13 Ref. 40 Ref. 13
Paralichthys californicus <0.1 (65) <0.1 (75) Ref. 13 Ref. 41 Ref. 13)
Parophrys vetulus <0.1 (77) Ref. 42 Ref. 34 Ref. 7
Phanerodon atripes 0.3 (31) 0.2 (27) 0.2 (18) 0.2 (27) Ref. 4 Phanerodon

furcatus
Phanerodon
furcatus

Phanerodon furcatus 0.1 (48) <0.1 (48) <0.1 (28) <0.1 (50) Ref. 14 Ref. 17 Ref. 17
Plectobranchus evides <0.1 (72) Ref. 19 Cebidichthys

violaceus (5)
Pleuronectidae <0.1 (110) Parophrys

vetulus
Hypsopsetta
guttulata

Ref. 7

Pleuronectiformes <0.1 (56) <0.1 (52) <0.1 (80) <0.1 (61) Citharichthys
sordidus

Hypsopsetta
guttulata

Ref. 7

Pleuronichthys verticalis <0.1 (112) Ref. 2 Hypsopsetta
guttulata

Ref. 7

Porichthys notatus <0.1 (107) Ref. 13 Ref. 43 Ref. 7
Pristigenys serrula <0.1 (71) <0.1 (90) Embiotoca

jacksoni
Paralabrax
clathratus

Ref. 4

Pronotogrammus
multifasciatus

<0.1 (69) <0.1 (80) Paralabrax
nebulifer

Paralabrax
clathratus

Raja binoculata <0.1 (75) Ref. 4 Ref. 44
Raja inornata <0.1 (82) Raja

binoculata
Raja

binoculata
Raja rhina 0.1 (41) Raja

binoculata
Ref. 44

Rathbunella alleni 0.1 (47) <0.1 (42) <0.1 (57) <0.1 (54) Rathbunella
hypoplecta

Cebidichthys
violaceus (5)

Rathbunella hypoplecta <0.1 (57) <0.1 (43) <0.1 (45) <0.1 (52) Ref. 9 Cebidichthys
violaceus (5)

Rathbunella spp. 0.2 (35) 0.2 (25) <0.1 (53) 0.1 (30) Rathbunella
hypoplecta

Cebidichthys
violaceus (5)

Rhacochilus toxotes <0.1 (81) <0.1 (53) <0.1 (59) <0.1 (63) Ref. 14 Embiotoca
jacksoni

Ref. 7

Rhacochilus vacca <0.1 (71) 0.1 (34) <0.1 (27) 0.1 (40) Ref. 14 Embiotoca
jacksoni

Ref. 7

Rhinogobiops nicholsii 0.2 (33) <0.1 (45) <0.1 (62) <0.1 (56) Ref. 13 Clinocottus
analis

Ref. 7

Scorpaena guttata 2.4 (10) 1.1 (15) 0.6 (18) Ref. 13 Ref. 45 Ref. 13
Scorpaenichthys

marmoratus
0.6 (19) 0.8 (8) 0.7 (17) Ref. 46 Ref. 47

Sebastes atrovirens <0.1 (83) 0.1 (38) 0.4 (11) 0.2 (26) Ref. 48 Ref. 49 Ref. 49
Sebastes auriculatus 1.3 (14) 0.1 (22) 0.7 (16) Ref. 50 Ref. 50
Sebastes babcocki <0.1 (94) <0.1 (68) <0.1 (79) Ref. 4 Sebastes

chlorostictus
Sebastes

chlorostictus
Sebastes carnatus 0.2 (37) 0.1 (41) <0.1 (29) <0.1 (46) Ref. 13 Ref. 46 Ref. 7
Sebastes caurinus 0.5 (25) 5.8 (6) 0.6 (10) 3.5 (9) Ref. 46 Ref. 48 Ref. 48
Sebastes chlorostictus 1.5 (14) 1.6 (10) <0.1 (37) 0.9 (11) Ref. 51 Ref. 52 Ref. 52
Sebastes constellatus 0.7 (20) 0.1 (35) <0.1 (40) 0.1 (43) Ref. 46 Ref. 51
Sebastes crameri <0.1 (65) <0.1 (64) <0.1 (47) <0.1 (68) Ref. 53 Ref. 54
Sebastes dallii <0.1 (101) 0.7 (17) <0.1 (41) 0.4 (21) Ref. 51 Ref. 55 Ref. 7
Sebastes diploproa 0.2 (38) Ref. 48 Ref. 56 Ref. 57
Sebastes elongatus 0.2 (39) 0.2 (28) 0.1 (33) Ref. 51 Ref. 58 Ref. 57
Sebastes ensifer 0.8 (18) <0.1 (63) <0.1 (64) <0.1 (74) Ref. 48 Ref. 55 Ref. 48
Sebastes entomelas 4.9 (5) 3.6 (8) 30.3 (1) 15.5 (3) Ref. 48 Ref. 59 Ref. 57
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Table S3. Cont.

Taxon
Natural
reef

Platform
base

Platform
midwater

Platform
complete WL VBGF LL

Sebastes eos <0.1 (73) <0.1 (61) <0.1 (75) <0.1 (72) Ref. 4 Sebastes
chlorostictus

Sebastes
chlorostictus

Sebastes flavidus 2 (12) 0.2 (24) 0.3 (13) 0.3 (23) Ref. 51 Ref. 60 Ref. 57
Sebastes gilli <0.1 (55) Ref. 4 Sebastes

levis
Sebastes
levis

Sebastes goodei <0.1 (53) <0.1 (46) <0.1 (30) <0.1 (53) Ref. 48 Ref. 61 Ref. 57
Sebastes helvomaculatus <0.1 (64) <0.1 (73) <0.1 (67) <0.1 (82) Ref. 48 Ref. 62 Ref. 48
Sebastes hopkinsi 29.2 (1) 11.3 (3) 20.9 (2) 15.6 (2) Ref. 48 Ref. 51
Sebastes jordani 0.3 (29) 5.1 (7) 8.3 (5) 6.5 (6) Ref. 48 Ref. 63
Sebastes lentiginosus <0.1 (80) <0.1 (56) <0.1 (58) <0.1 (66) Sebastes

umbrosus
Sebastes
umbrosus

Sebastes
umbrosus

Sebastes levis 0.9 (17) 1.4 (11) <0.1 (55) 0.8 (14) Ref. 48 Ref. 48 Ref. 48
Sebastes macdonaldi <0.1 (87) 1 (16) 0.6 (19) Ref. 4 Sebastes

paucispinis
Sebastes

paucispinis
Sebastes melanops <0.1 (39) <0.1 (65) Ref. 46 Ref. 64 Ref. 57
Sebastes melanosema <0.1 (111) Ref. 65 Sebastes

hopkinsi
Sebastes
aleutianus

Sebastes melanostomus <0.1 (54) <0.1 (69) <0.1 (88) Ref. 51 Ref. 66
Sebastes miniatus 2.5 (9) 7 (5) <0.1 (49) 3.9 (8) Ref. 51 Sebastes

chlorostictus
Sebastes

chlorostictus
Sebastes moseri <0.1 (78) <0.1 (72) <0.1 (32) <0.1 (58) Ref. 4 Sebastes

hopkinsi
Sebastes mystinus 6.5 (4) 0.4 (22) 1.4 (7) 0.8 (12) Ref. 46 Ref. 67 Ref. 57
Sebastes nigrocinctus <0.1 (92) Ref. 26 Sebastes

chlorostictus
Sebastes

chlorostictus
Sebastes ovalis 0.3 (30) <0.1 (71) 0.1 (21) 0.1 (42) Ref. 51 Ref. 51
Sebastes paucispinis 3.9 (6) 22.5 (1) 13.5 (4) 18.4 (1) Ref. 4 Ref. 53 Ref. 57
Sebastes phillipsi <0.1 (99) Ref. 4 Sebastes

chlorostictus
Sebastes

chlorostictus
Sebastes pinniger 0.8 (19) 1.4 (13) <0.1 (76) 0.8 (15) Ref. 46 Ref. 68 Ref. 7
Sebastes rastrelliger <0.1 (48) <0.1 (73) Ref. 69 Ref. 69
Sebastes rosaceus 0.4 (28) 0.3 (23) <0.1 (42) 0.2 (28) Ref. 46 combined

(55) and (46)
Ref. 57

Sebastes rosenblatti 0.5 (24) 1.4 (12) <0.1 (34) 0.8 (13) Ref. 51 Ref. 51
Sebastes ruberrimus 0.1 (46) 0.1 (39) <0.1 (50) <0.1 (44) Ref. 46 Ref. 70 Ref. 57
Sebastes rubrivinctus 0.1 (45) 0.6 (18) 0.1 (25) 0.4 (22) Ref. 4 Sebastes

hopkinsi
Sebastes rufinanus <0.1 (74) <0.1 (44) <0.1 (70) Ref. 65 Ref. 48 Sebastes

aleutianus
Sebastes rufus 1.7 (13) <0.1 (60) 0.3 (17) 0.1 (32) Ref. 51 Ref. 71
Sebastes saxicola <0.1 (67) 0.1 (37) <0.1 (62) <0.1 (45) Ref. 51 Ref. 51
Sebastes semicinctus 3.8 (7) 11.2 (4) <0.1 (33) 6.2 (7) Ref. 4 Ref. 51
Sebastes serranoides 0.4 (27) 0.4 (21) 0.7 (9) 0.5 (20) Ref. 46 Ref. 72
Sebastes serriceps 0.2 (36) 0.2 (32) <0.1 (46) 0.1 (38) Ref. 73 Ref. 73
Sebastes simulator 0.1 (44) 0.1 (40) <0.1 (54) <0.1 (51) Ref. 2 Sebastes

ensifer
Sebastes
ensifer

Sebastes spp. 3.8 (8) 1.8 (9) 15.7 (3) 8 (5) Sebastes
hopkinsi

Sebastes
hopkinsi

Sebastes umbrosus 0.2 (40) 0.5 (20) <0.1 (52) 0.3 (24) Ref. 4 Ref. 55 Ref. 57
Sebastes wilsoni 8.1 (3) <0.1 (44) <0.1 (43) <0.1 (55) Sebastes

zacentrus
Sebastes
hopkinsi

Sebastes
zacentrus

Sebastes zacentrus <0.1 (59) <0.1 (47) 0.1 (26) <0.1 (47) Ref. 65 Ref. 74 Ref. 7
Sebastolobus alascanus <0.1 (63) <0.1 (76) <0.1 (85) Ref. 75 Ref. 76
Sebastolobus spp. <0.1 (93) Sebastolobus

altivelis
Sebastolobus

altivelis
Sebastomus 1 (16) 0.1 (33) <0.1 (35) 0.1 (39) Sebastes

zacentrus
Sebastes
ensifer

Ref. 7

Semicossyphus pulcher 0.6 (22) <0.1 (49) 0.4 (12) 0.2 (29) Ref. 13 Ref. 77 Ref. 78
Stichaeidae spp. <0.1 (69) Xiphister

mucosus
Cebidichthys
violaceus (5)
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Table S3. Cont.

Taxon
Natural
reef

Platform
base

Platform
midwater

Platform
complete WL VBGF LL

Synodus lucioceps <0.1 (105) <0.1 (70) <0.1 (81) Ref. 13 Paralabrax
clathratus

Ref. 13

Torpedo californica 0.2 (32) Ref. 14 Ref. 79
Zalembius rosaceus 0.6 (23) <0.1 (66) <0.1 (78) <0.1 (76) Ref. 2 Cymatogaster

aggregata
Ref. 7

Zaniolepis frenata 0.4 (26) <0.1 (51) <0.1 (66) <0.1 (60) Ref. 2 Ref. 8
Zaniolepis latipinnis <0.1 (68) <0.1 (76) <0.1 (74) <0.1 (84) Ref. 2 Zaniolepis

frenata
Zaniolepis spp. 0.2 (34) <0.1 (57) <0.1 (70) <0.1 (71) Zaniolepis

latipinnis
Zaniolepis
frenata

Zoarcidae <0.1 (66) Lycodes
pacificus

Lycodes
brunneofasciatus

(80)

The percent contribution to the Total Production (and rank order in parentheses) of each taxon for each habitat type or subtype and the references for the
weight–length equation (WL), Von Bertalanffy growth function (VBGF), and length–length conversion (LL) parameters used in the production model. The
proxy species used is listed when the life history parameters were unavailable for the species.

1. Arbour JH, Avendaño P, Hutchings JA (2010) Aspects of the ecology and life history of alligatorfish Aspidophoroides monopterygius. Environ Biol Fishes 87(4):353–362.
2. Love MS (2011) Certainly More Than You Want to Know About the Fishes of the Pacific Coast (Really Big Press, Santa Barbara, CA).
3. Stepien CA (1986) Life history and larval development of the giant kelpfish, Heterostichus rostratus Girard, 1854. Fish Bull 84(4):809–826.
4. RecFIN (2009) Pacific States Marine Recreational Fisheries Monitoring. Available at www.recfin.org. Accessed June 21, 2012.
5. Marshall W, Echeverria TW (1992) Age, length, weight, reproductive cycle and fecundity of the monkeyface prickleback (Cebidichthys violaceus). Calif Fish Game 78(2):57–64.
6. Echave KB, Hanselman DH, Adkison MD, Sigler MF (2012) Interdecadal change in growth of sablefish (Anoplopoma fimbria) in the northeast Pacific Ocean. Fish Bull 110(3):361–374.
7. Froese R, Pauly D, eds (2012) FishBase, Version 04/2013. Available at www.fishbase.org. Accessed September 20, 2012.
8. Fitch JE, Lavenberg RJ (1968) Deep-Water Teleostean Fishes of California (Univ of California Press, Berkeley, CA).
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